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We present an efficient computational approach to sample the histories of nonlinear stochastic processes.
This framework builds upon recent work on casting a d-dimensional stochastic dynamical system into a �d
+1�-dimensional equilibrium system using the path-integral approach. We introduce a cluster algorithm that
efficiently samples histories and discuss how to include measurements that are available into the estimate of the
histories. This allows our approach to be applicable to the simulation of rare events and to optimal state and
parameter estimation. We demonstrate the utility of this approach for �4 Langevin dynamics in two spatial
dimensions where our algorithm improves sampling efficiency up to an order of magnitude.
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I. INTRODUCTION

Onsager and Machlup �1� pioneered the path ensemble
approach to classical stochastic processes in 1953, only a few
years after Feynman’s seminal work on quantum systems �2�.
Despite nearly simultaneous origins, however, the computa-
tional application of this framework to classical systems
lagged far behind its quantum counterpart. While Monte
Carlo methods were applied to lattice gauge theory and
quantum condensed matter systems in the early 1970s �3�,
only within the past decade has the Onsager-Machlup ap-
proach become practical for computational modeling of clas-
sical nonequilibrium processes.

Following the analytical results of Domany �4� for
�2+1�-dimensional Potts models, computational work began
with Zimmer �5�, who devised a Monte Carlo algorithm to
sample entire space-time configurations, or histories, of a
kinetic Ising model. That work demonstrated the utility of
the Monte Carlo approach where histories can be condi-
tioned on rare events. Olender and Elber �7� used a similar
approach to circumvent the time limitations of molecular-
dynamics simulations, specifically to find reaction pathways
when both the initial and final states are known. See the
work of Chandler et al. �6�, Jónsson et al. �8�, and others
using this methodology �9,10�.

In this paper, we extend the computational work by pre-
senting a percolation-based cluster Monte Carlo approach to
sample the statistical mechanics of histories for nonlinear
stochastic processes. We also describe how to apply this
method to rare event simulations and optimal estimation. The
cluster algorithm we present improves the statistical sam-
pling of histories in Monte Carlo simulations significantly.
In traditional spatial cluster algorithms �11�, the clusters
represent statistically independent objects at a given time. In
the �d+1�-dimensional mapping we introduce, the clusters
can be interpreted as statistically independent objects in
space-time.

Our goal is to determine the conditional statistics of his-
tories for a stochastic dynamical system x�t�, given a model
and incomplete information about that system. The state vec-
tor x satisfies the following Itô process:

dx�t� = f�x,t�dt + �2D�x,t��1/2dW�t� , �1�

where f�x , t� is the force term, and the stochastic effects are
provided by the last term, in which the diffusion matrix D
acts on a vector-valued Wiener process, W. We assume that
the noise errors are uncorrelated, and that the initial value
x�t0� is a random variable with a known distribution. This
system could represent the configuration of a protein evolv-
ing under Brownian dynamics �7�, the concentration of inter-
acting metabolites, the locations of atoms in a crystal under-
going a structural phase transition or nucleation, or the state
of a queue in a stochastic fluid model. The final state can also
be a rare event on which the history is conditioned. For in-
stance, the configuration of an unfolded protein chain can be
conditioned in the initial state and the folded protein in the
final state.

The probability of the dynamics generating a given his-
tory is simply related to the probability that it experiences a
certain noise history, ��tk��W�tk+1�−W�tk�, at times tk,
where k=0,1 , . . . ,T. We incorporate this probability into the
discretized form of Eq. �1�. In the interest of simplicity, we
use the explicit Euler-Maruyama discretization scheme. This
leads to the following:

xk+1 = xk + f�xk,tk��t + �2D�xk,tk��1/2��tk� . �2�

For Gaussian uncorrelated white noise with variance
�����=��t− t��, the probability distribution of noise is
P���t�	�exp�− 1

2
k���tk��2 /�t�. The probability of a specific
history is given by P���t�	�exp�−S�, where S is the action
of the d-dimensional system �equivalent to the Hamiltonian
of the �d+1�-dimensional system�. By rearranging terms in
Eq. �2�, the form of the action becomes

S � 

k=0

T−1
1

4�t
��xk+1 − xk − f�xk,tk��t�TD�xk,tk�−1

� �xk+1 − xk − f�xk,tk��t�	 , �3�

where T indicates the transpose. With action S, the statistics
of istories of the time-dependent, stochastic dynamical sys-
tem has been cast as an equilibrium statistical mechanical
system.
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Now let us incorporate the information about the system
into the action functional. For simplicity, we will assume that
the information comes at discrete times tm, where m labels
each observation m=1, . . . ,M. These observations �e.g., ex-
perimental measurements� are given in a function, h�x , t�,
and it is assumed to have errors denoted here by ��x , t�, i.e.,

y�xm,tm� = h�xm,tm� + �m,

with error covariance, �����=Rm. By using Bayes’ rule �10�,
the action arising from measurements becomes

SM = 

m=1

M

�hm − ym�TRm
−1�hm − ym� . �4�

The action-functional, Stotal=S+SM, assigns weights to indi-
vidual histories. In the absence of additional information,
histories unlikely to arise from the dynamics are given a
lower weight than histories that are more likely. However,
when there are measurements, histories that are far from the
measurements are given lower weight than those closer to
the measurements.

II. A SPACE-TIME CLUSTER ALGORITHM

To sample the distribution of histories and hence to assign
weights to them, various methods have been applied �includ-
ing local Monte Carlo, unigrid, and generalized hybrid
Monte Carlo �10��. Here we describe a space-time cluster
algorithm that is an extension of the embedded dynamics
algorithm introduced by Brower and Tamayo �BT� �14�.
Cluster algorithms are widely used in physics, statistics, and
computer science �13�. The first of these, introduced by
Swendsen and Wang �SW� �11�, is based on a mapping be-
tween the Potts model and a percolation problem �12�.

Brower and Tamayo extended the SW algorithm to a con-
tinuous field theory by embedding discrete variables �spins�
into the continuous field in an equilibrium classical �4 model
�14�. The �4 potential is a symmetric double-well potential
of the form

V�r,t� = �a/4��4�r,t� − �b/2��2�r,t� . �5�

The discrete spin variables, sr, label the two wells in �4

potential such that �r=sr��r�. At fixed values of ���r��, a
ferromagnetic Ising model is embedded into the �4 field
theory, which allows the use of the SW dynamics. The de-
tailed procedure of the embedded dynamics is as follows:

�i� Update �r via a standard local Monte Carlo algorithm.
�ii� Form percolation clusters dictated by the bond prob-

ability,

prr� = 1 − e−	rr��1+srsr�� = 1 − e−���r���r��+�r�r��,

where the effective spin-spin coupling is 	rr�= ��r�r��. Note
that prr� reduces to 1−exp�−2	rr�� when the spins are the
same sign.

�iii� Update the Ising variables by flipping the percolation
clusters independently with probability 1 /2. If the move is
accepted, flip the sign of the fields in the cluster.

To extend the embedded dynamics to space-time, we need
to redefine the clusters based on the discretized dynamical

equation and the corresponding action as in Eqs. �2� and �3�.
Next we illustrate this formalism with the �4 field theory in
�2+1� dimensions.

We consider the discretized Langevin equation,

��r,t + �t� = ��r,t� +
�t

�x2�

i

��ri,t� − 4��r,t�
+ �t�− a��r,t�3 + b��r,t�� + ��t��r,t� ,

�6�

where the force term is the derivative of Eq. �5� with respect
to �, and 
i is a sum over the nearest neighbors of ��r , t�.
The noise variables ��r , t� are chosen to be Gaussian distrib-
uted, independent random variables of mean zero and with
correlations ���r , t���r� , t���=2D�r,r���t− t��. For this
model, the action becomes

S �
1

4D�t


r,t

���r,t + �t� − ��r,t� − �t�− a�3�r,t�

+ b��r,t�� − �t�

i

��ri,t� − 4��r,t��2
. �7�

By expanding the square in the right side of Eq. �7�, we
obtain many cross terms representing different couplings be-
tween neighbors both in space and time. All of the interac-
tions between a site and its neighbors in space and time are
shown explicitly by Zimmer �5�. Excluding the local terms
�e.g., ��r , t�2�, the interactions yielding different spin-spin
couplings can be grouped into four types �using �r j , tk� as the
reference site�:

�i� Nearest neighbors of �r j , tk−1� coupled to �r j , tk�,

	1 = 2�t�

i

��ri,tk−1����r j,tk� .

�ii� Site �r j , tk−1� coupled to �r j , tk�,

	2 = ��2b − 8��t − 2a�t�2�r j,tk−1� + 2���r j,tk���r j,tk−1� .

�iii� Nearest neighbors of �r j , tk� coupled to each other,

	3 = − �t2�

i

��ri,tk���

i

��ri,tk�� .

�iv� Nearest neighbors of �r j , tk� coupled to �r j , tk�,

	4 = �

i

��ri,tk�����8 − 2b��t2 − 2�t���r j,tk�

+ 2a�t2�3�r j,tk�	 .

The probability of a site having a bond with any of its neigh-
bors is

Pi = 1 − e−2	i/�4D�t�, �8�

where i=1, . . . ,4. A significant difference from BT is that the
sign of 	i is not known a priori. Depending on the value of
�, the interaction can be either ferromagnetic or antiferro-
magnetic �15�. At each step we determine whether the cou-
pling term is ferromagnetic �	i
0� or antiferromagnetic
�	i�0� and require the signs of spins to be the same or
opposite, respectively, for a bond to exist. Once the clusters
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are defined, we use the same steps as BT described earlier in
text.

Next, we compare the performance of this cluster method
to two other algorithms, local Monte Carlo and unigrid �10�.
To quantify performance, we measured the correlation time
of a quantity M = �
��, the sum of fields at all space and time
points. This quantity is analogous to the magnetization of a
spin system. Because M is a global quantity, it is one of the
slowest modes of the system �16�. We remind the reader that
our cluster algorithm updates the fields by changing the sign
of fields in a flipped cluster. Therefore, by taking the absolute
value of the fields we are left with the true correlations. The
correlation time, �, is obtained by fitting exp�−t /�� to the
autocorrelation function defined as �Mt0+tMt0

�.
The performance of the cluster algorithm depends on sev-

eral factors. For a fair comparison of our algorithm to the
local one, we used an acceptance ratio of a�0.5 for which
the local algorithm is empirically most efficient. The corre-
lation times are highly dependent on noise strength �propor-
tional to the square of the temperature� as is expected from
any algorithm. We measure �’s at different noise strengths
for a system of spatial dimension, L=10 with periodic
boundary conditions and time dimension, T=100 with open
boundary conditions. In Table I, these times are shown for
the local and cluster algorithms as characterized by the decay
of CM�t�. The cluster algorithm performs only slightly better
than the local algorithm at low noise strengths, and it is most
beneficial at D�25 with nine times more efficiency. At this
noise strength, the cluster size distribution scales as ns
�s−2.2, as shown in Fig. 1.

We also compared the performance of the cluster algo-
rithm to a unigrid algorithm �10� which has been shown to
speed up the dynamics significantly. In Table II, we show the
performance of the local, cluster, and unigrid algorithms at
the same noise strength �D=25� for different system sizes.
The cluster algorithm correlation times are much smaller
than the local �’s and comparable to the unigrid algorithm.

III. MEASUREMENTS

Thus far we have not included any measurements or local
fields in the system. In forecasting complex systems �e.g.,

weather�, it is crucial to make use of data available to predict
the path of the system. The cluster algorithm we have intro-
duced is especially useful where some measurements are
available. As illustrated in Eq. �3�, the action corresponding
to the measurements, SM, can be added to the action S in Eq.
�7�,

SM = 

m

���rm,tm� − �m�rm,tm��2

2m
2 , �9�

where �m is the value of � measured at rm , tm with error
variance m

2 . The cluster algorithm can be easily modified to
incorporate the measurements. The spin-spin couplings de-
fined earlier remain the same because the measurements are
added to the action separately and are independent of the
dynamics. However, the cluster flipping probability must be
adjusted since it costs more/less to flip the sign of a spin if
there is a measurement at that point. The local field at a site
is analogous to having a measurement in our case. Dotsenko
et al. �17� have discussed the probability of flipping a site in
an Ising model when there are local fields at that site. In the
presence of external field h, the probability of flipping a clus-
ter gets weighted by the local fields, i.e.,

pflip = exp�±

j

hj���exp�

j

hj� + exp�− 

j

hj� ,

�10�

which reduces to pflip=1/2 as expected for h=0.
Let us now derive the probability of flipping a cluster in

the presence of measurements. Expanding the square on the
right-hand side of the action in Eq. �9� yields only one

TABLE I. Correlation times of the magnetization M for local
and cluster algorithms for several noise strengths, D. The system
dimensions are L=10 and T=100, the acceptance ratio a�0.5, �t
=0.05, and �x=1.0. The length of the run was 100 000 MCS, and
the data analyzed for the last 80 000 MCS. The cluster algorithm is
fastest at D�25.

D �local �cluster

1 947 775

5 180 134

15 25 8.8

20 19 2.9

25 12 1.4

30 9 1.1

TABLE II. Correlation time, �, of magnetization, M, with the
local, cluster, and unigrid algorithms for different system sizes, L
and T with D=25. The cluster algorithm is a factor of 9 times faster
than the local one, and comparable to the unigrid.

L T �local �cluster �unigrid

8 32 12.2 1.74 1.54

16 128 11.1 1.50 1.80

32 512 13.3 1.79 1.62

FIG. 1. The cluster size distribution at noise D=25. The size
distribution scales as ns�s−2.2.
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coupled term, −2��rm , tm��m�rm , tm�. With this coupled term,
the flipping probability becomes

pflip =
e
m−2��r,t��m�r,t�

e
m2���r,t���m�r,t� + e
m−2���r,t���m�r,t� . �11�

We set artificial measurement points such that the system is
initially in the positive well �at t=0�, and it transitions into
the negative well forced by the measurements. We measured
the probability distribution function �PDF� of � using the
cluster algorithm as shown in Fig. 2. The pdf obtained using
the local algorithm agrees with this PDF as expected. In
Table III, we show the performance of both algorithms for
different system sizes �D=25� with four measurement points
of variance 2=0.01. The cluster algorithm consistently out-
performs the local algorithm in the presence of the measure-
ments.

IV. DISCUSSION

In this paper, we have described a cluster Monte Carlo
algorithm to sample space-time histories of a nonlinear sto-
chastic process. This approach can be applied to study path-
ways to rare events as well as for optimal state and parameter
estimation.

At the noise strength where the cluster size distribution
scales, the cluster algorithm outperforms the local Monte
Carlo updates significantly. We have not observed scaling of

magnetization correlation times as a function of system size,
therefore the observed speedup is independent of the system
size. The noise strength required to observe this scaling de-
pends on the size of the space-time domain. For the finite
�and relatively small� systems we have studied in this paper,
this noise does not correspond to the critical temperature in
the original D-dimensional system.

Although the efficiency of our algorithm is comparable to
the unigrid algorithm, it can be preferred over the unigrid
method when the observation of the clusters as correlated
structures is of interest. The clusters are statistically indepen-
dent space-time events, and the temporal �time-axis� extent
of these objects provides an estimate of their lifetime. For
instance in nucleation process, the correlated structures in the
system, e.g., droplets, signify the fluctuations of the meta-
stable equilibrium �18� and it is of interest to measure the
lifetime of these droplets directly. In the future, we plan to
use this method to simulate the Ginzburg-Landau equation
�model A� in order to study nucleation and find the distribu-
tion of the lifetimes ��� of clusters to test theoretical predic-
tions �18�.

Our method is applicable to more general potentials aris-
ing from other nonlinear stochastic partial differential equa-
tions such as the Cahn-Hilliard-Cook equation, which en-
ables the study of spinodal decomposition.
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